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for the Transient Analysis of Linear

Systems at Microwave Frequencies
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Abstract-A new convolution-type method is presented for the

transient analysis of causal linear systems described in the
frequency-domain. The central novelty lies in the proposed

method of determining impulse responses in the time-domain,
which are interpreted as truly discrete functions corresponding

to periodically-extended system functions in the frequency-
domain. Such impulse responses may be computed with high

numerical efficiency, while having excellent interpolation
properties with respect to the original system function. The
convolution operations wh]ch result are also naturally in the

form of a sum-of-products calculation. The method is capable

of handling arbitrary excitation signals, and may in principle

be readily extended to more general nonlinear analysis. Several

examples of the technique are given, including comparisons and

validation both using existing methods, analytical results and

experimental measurements.

I. INTRODUCTION

E FFICIENT and flexible large-signal analysis capability

is a critical requirement for many types of microwave

CAD. Because of the complexity of the circuit and device

models involved in such simulations, considerable challenges

arise in finding a suitable general-purpose method of numerical

solution. This contribution describes a new approach to the

characterisation of causal linear systems which provides a

very attractive basis for analysing the more general nonlinear

problem. However, in order properly to describe the basis and

range of applicability of the proposed approach, we restrict our

attention in the present paper solely to the transient analysis of

linear, time-invariant electrical systems, subject to essentially-

arbitrary excitation signals. The method has already been

described in brief outline in [1]: in the following, a more

extensive discussion of the mathematical basis is provided, and

important issues affecting accuracy and areas of applicability

are addressed.

The literature on the transient numerical solution of linear

systems is, of course, very extensive, and in this introduction

we consider only briefly those methods more commonly

encountered by microwave engineers, to whom two basic

situations usually present themselves. In the first case, the

composition of the linear system is known, and a time-domain
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description is possible in terms of a finite system of ordinary

differential equations (ODE’ s), such as in the familiar case

of lumped circuit elements. Numerical solution of the ODE’s

involves their transformation to difference equations, and it

is possible within this context to extend the analysis to

include distributed circuits consisting of ideal transmission

lines. The SPICE program is probably the most well-known

electrical analysis tool for this kind of problem, but many

others exist. A reasonably wide range of common excitation

signals are accommodated within SPICE, and transient anal-

ysis proceeds by standard step-by-step, time-domain solution

techniques.

A second, not necessarily separate, situation arises when

the terminal behaviour of the line~ network is specified in

terms of a complex-valued system function in the frequency-

domain. This may be achieved either by direct calculation for

a known network structure, by measurement, or through some

other process. A very common numerical analysis approach

in such cases involves sampling the excitation signal in the

time-domain, followed by application of the Discrete Fourier

Transform (DFT) to produce a representation in the frequency-

domain—an operation which may benefit greatly from the

computational efficiency of the Fast Fourier Transform (FFT)

algorithm [2]. The solution is then carried out in terms of

frequency-domain samples, and an inverse DFT is carried

out to recover the time-domain solution [3]. Indeed, this

procedure is theoretically exact, at least for the steady-state

response, provided the excitation signal is band-limited and

sampled at least at the Nyquist rate. If these conditions are

not satisfied, however, aliasing errors occur which are difficult

to estimate and/or may require large transform sizes for their

minimisation. It may be noted that the extension of this latter

technique to mixed linear/non-linear system solution leads to

the well known Harrnonic-Balance method in its various forms

[4], [5].

The method proposed in this work is based on a convolution

technique, with the main novelty residing in the method of ob-

taining and using the impulse response samples. Convolution-

oriented techniques have been proposed by a number of

authors (e.g. [6]–[8]), but they either continue to rely on direct
application of the DFT to interconnect time- and frequency-

domains, or are restricted in the class of linear problem which

may be addressed (e.g. nearly-matched transmission lines). Of

course, in mathematical terms, the transient response is also
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Fig. 1. Classification of time-domain and frequency-domain relationships.

obtainable from the inverse Laplace Transform, and, while

numerical implementation of this approach is possible [9],

considerable care is needed in practice to produce reliable

results. A range of other approaches to transient analysis

have been proposed, including different methods based, for

example. on “waveform relaxation” or “asymptotic waveform

expansion (AWE),” which are applicable to lossy transmission

line problems [10], [1 1].

In Section II we present the linear-system and signal-

processing background to the method proposed here, described

as the Causal-Convolution method. This is followed in Sec-

tions III and IV by an account of the practical implementation

issues that must be considered for applying this method.

A selection of representative results is contained in Sec-

tion V, aimed at assessing and validating the technique in

comparison both with other methods, and with experimental

measurements. A discussion and conclusions are contained in

Section VI.

II. LINEAR-SYSTEM AND SIGNAL-PROCESSING

BASIS OF THE CAUSAL-CONVOLUTION METHOD

The essential framework for the method described here may

be introduced with reference to Fig. 1. This diagram classi-

fies functions which are described equivalently in the time-

domain and (real) frequency-domain, into the sub-categories

of discrete and continuous, in the sense of the range of the

independent variable. These are further divided within each

class as either periodic or non-periodic. For present purposes,

all frequency-domain representations are assumed to exhibit

Hermitean symmetry, i.e.:

x(f) = X“(-f) (1)

?

where “*” denotes complex conjugate, and the time-domain

functions are accordingly real-valued. It is assumed further that

all time functions have finite average power, whether averaged

over one period (in the periodic case) or over all time. Note

that the representations of Fig. 1 may be taken to apply either

to signals or systems. For example, in the case of signals, the

frequency-domain representation would be interpreted as the

spectrum of the signal, whereas for systems, the time-domain

function constitutes the impulse response of the system, and

so on.

The Fourier Transform (FT) provides a general relationship

between the two domains, and in fact, using the mathematical

theory of distributions, all four transform-pair relationships

indicated in Fig. 1 may be viewed as particular cases of

the FT. However, it is considered clearer in the present

context to reserve use of the FT for continuous, non-periodic

functions in time and frequency. Of the remaining three

cases, the DFT is observed to be appropriate to functions

which are inherently periodic in both domains—this gives rise

to the aliasing problems mentioned earlier when it is used

with non-band-limited signals. Moreover, the DFT is strictly
defined for discrete functions only—extrapolation to contin-

uous behaviour requires great care. In the design of Finite

Impulse Response (FIR) digital filters, for example, it is well

known that direct use of the DFT produces poor interpolation

behaviour between sample points in the continuous frequency

domain [12].

A further transform pair in Fig. 1 is the familiar form

of the Fourier Series, while the fourth situation is of most

direct interest in what follows. This transform relates con-

tinuous, periodic, complex-valued functions in the frequency-

domain, to discrete, real-valued functions in the time-domain.

A straightforward approach to such cases would be to use a
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reverse form of Fourier Series, as follows, where 2.wm is taken

as the period of the frequency-domain function:

+l.’Jm
Z(nl’) = :.

/
X(w) . exp[+jnuT] . dw

—mm
+(x

X(u) = ~ z(nT) . exp[–jnwl’]
‘n. -m

= z(o) + y[z(kq+Z(–kq] . Cos(kd!’)

,k=l
+m

– j~[z(kT) – $(–M)] . sin(kd’) (2)
k=l

where T = (n/wm).

Notice the exponent sign-change compared to the usual

complex form of the Fourier Series, the reason for which is

explained in due course. Using (1) it is easy to confirm that

the above integral for the time-domain samples gives a purely

real-valued result, which, with X(u) = R(w) + j . 1(u), may

be evaluated as:

x(nT)

1
— —.

/
‘m [R(w).cos(n7rT) - I(w). sin(n~T)] . dw

Wm ~

(3)

Assuming the periodic frequency-domain function in question

to be a system function, then (2) shows that the associated time

function, which is a form of impulse response, is a discrete,

real-valued function extending over positive and negative

time. The approach just described is quite general, in that

the real and imaginary parts of the system function may be

defined independently, provided (1) is satisfied. However, all

physically-realizable passive systems must exhibit the property

of causali~, meaning simply that if the input is zero for

time t < to, the output is also zero for t < to. Hence,

the impulse response must also be zero for negative time.

In terms of the associated system function, this places quite

severe additional constraints on the frequency-dependence

of the real and imaginary parts (or amplitude and phase

functions), besides the condition of (l), which merely ensures

that the impulse response is real. For periodic functions,

these conditions may be expressed as the following Hilbert

Transform pair [2]:

+.
I(w)=–&. / ()W—A

R(A) . cot ~ . dA
—T

+x
R(w) = %(0)+ & .

/ ()
W—A

I(A) $cot ~ . d~ (4)
—r

It maybe noted further that if the system function is minimum

phase (i.e. has no zeroes in the open right-hand s-plane), the

real-part function is uniquely determined by the imaginary-

part function, and vice versa. Using (4) in (3), we find that

~(nT) becomes identically zero for negative values of “n,”

as would be expected for a causal time-domain representation.
(This would not be the case if the opposite sign had been used

in the exponents of (2), since the time-domain samples would

then become anti-causal, i.e. zero-valued for positive time).

Assuming a causal system function in the following dis-

cussion, then a substantial improvement becomes possible

with regard to the numerical calculation of impulse response

samples, if the causal condition is in effect forced by the

transform relationships. Hence, the following transform pair

is proposed here for such cases, as a replacement for (2):

+L.Jm

x(nT) = ~ .
/

X(w) . exp [+jnwT] . dw
—~m

+Ce

X(w) = T . ~ ~(nT) , exp [–jnwT]
n=ll

= T . z(O)+ T . j; z(kT) , [cOS(kWT)

k=l

–j . sin(kwT)]

The change in scaling factors has been introduced to

(5)

allow

the z(nT~ to limit to-the conventional (continuous) impulse

response as Wm tends to infinity. For numerical evaluation of

(5), the infinite summations shown must be truncated. If a

finite number of terms are sufficient in the summation, then

it is easy to show that the integral evaluation in (5) reduces

exactly to a trapezoidal-rule type of summation. In particular,

if (iV + 1) equally-spaced samples of the system function

in the frequency range [0, w~] are used in (5), the impulse

response produced is of length (2. IV) in positive time. Then

it is possible to take full advantage of the FFT algorithm,

and obtain results with excellent accuracy, provided sufficient

samples are taken of the frequency domain function so that

the discrete impulse response tends to reasonably small values

when computed at the largest time points. As demonstrated in

the examples to follow, the impulse response calculated in this

way is found to have excellent interpolation properties in the

frequency domain, in the sense of fitting the original system

function well between the (N + 1) frequency sample points

used for its derivation.

With the system function represented by a finite impulse

response, the computation of the transient response in effect

reduces to a discrete convolution operation at each time step.

However, the precise nature of this operation depends on the

formulation of the system function, as discussed in more detail

in the next section.

The essence of the technique presented here is to define

a methodology whereby all causal linear system functions

may be represented approximately by a finite impulse re-

sponse, up to some specified boundary frequency. Beyond

this frequency, the (periodic) function to which the impulse

response interpolates and the original system function, may

deviate quite considerably. Therefore the main error in per-

forming transient analysis using the discrete impulse response

description, resides in the degree to which the spectral energy

in the excitation signal becomes relatively small beyond the

boundary frequency. The situation is depicted schematically

in Fig. 2, where an amplitude response is shown together with

both its periodic extension and an assumed spectral distribution

for the excitation signal. Errors arise in transient analysis
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Frequency [GHZ]

Fig. 2. Example of system amplitude function (~) and periodic extension,

with spectral distribution of excitation signal (~~ = 20 Gh=).

from that portion of the signal spectrum beyond fm which

interacts with the periodic extension of the system function,

rather than with the original system function. In practice, and

as demonstrated in Section V, the technique is found to be

rather tolerant of “leakage” of excitation signal spectral energy

beyond the boundary frequency.

The overall process described above for computing the

impulse response samples, combined with cimying out the

appropriate convolution operations, will be described in the

following as the Causal-Convolution (CC) technique for the

transient analysis of linear systems.

III. NATURALLY-PERIODIC SYSTEM FUNCTIONS

It is clear from the previous section that the CC-method

is based fundamentally on the concept of a periodic system

response. Of course, the majority of system functions encoun-

tered in practice do not directly satisfy this requirement, but as

will be shown in due course, the CC-approach can still give

excellent results in such cases provided certain preparatory

steps are taken. For the present, many essential features of the

technique may be illuminated by assuming that the system

function is indeed periodic. A number of circuits familiar

to microwave engineers perfectly fulfil this condition-indeed,

any network composed of an arbitrary connection of ideal,

commensurate transmission lines will suffice.

In order to focus the discussion, we consider the one-port

network in Fig. 3. Let us suppose that the transient input

current is required in response to a specified excitation voltage

beginning at t = O. A simple choice for the system function

would be the input impedance Z(w) which is assumed to be

periodic in frequency over [–wm, w~]. If (JV + 1) samples are

Rs i(t)

T~ ~e(t) O Linear 1-Port

S11 (f) [Ref. Ro]

Fig. 3. Simple l-Port network to demonstrate transient analysis technique.

taken in the positive frequency range, then impulse response

samples z (k’T) may be computed as described in the previous

section, with ‘k’ in the range {O, (21V – 1)}. Now in the

frequency-domain we write:

E(k)) = [R. + z(w)] . I(u)

Using the CC-approach and transforming to the time-domain:

2N–1

e(nl”) = R. . i(nT) + T . ~ i((n – k) Z’) . z(kT) (6)

k=o

Notice that instead of a convolution integral being required in

the time domain, as would normally be the case, the discrete

nature of z (M’) means that the simple summation shown in

(6) is exactly correct. The algorithm for computing the i(nT)

is therefore:

However, this approach may not be optimum, since the

impedance magnitude can range widely, and could indeed

range from minus- to plus-infinity in particular cases. An

unattractively-large number of frequency samples would

therefore be required to achieve accurate results throughout

the frequency band.

We have found that, in general, system function formu-

lations based on the scattering matrix are usually much

preferable, since the parameters remain bounded in spite of

impedance singularities. For example, let S1l (w) denote the

input voltage reflection coefficient (referred to Ro) in Fig. 3,

and hl 1(k’T) represent the corresponding impulse response

samples. Using a similar approach to that given above, it is

straightforward to show that the current may now be calculated

from (8), shown at the bottom of the page.

Although these equations may suggest that the time spacing

of the output samples must coincide with the impulse response

spacing, in fact this is not so: a simple modification to the

convolution expression allows any time step to be used which

[

{1 - hll(0) ~7’} . e(nl”) - T ~~~fl~’ C((n - k)T) hll(kT)
i(nT) =

R. .{l+hll(0). T}+R5 {l-h n(0) T} 1
where:

C’(WLT) = [e(mT) + {R. – R.} ~z(wL!’)] (8)
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Fig. 4. (a) Transient response of short-circuited transmission line; (b) im-
pulse response computed from SI I (f) [l?. = 2.2.]; (c) pulse response of
input current t(t).

is an integer times smaller than this spacing. Varying time-

steps may be accommodated by using a suitable interpolation

technique. Hence, essentially-arbitrary resolution is possible

in the time-domain solution.

There is an interesting alternative view of the above for-

mulations, from the point of view of digital filter concepts.

For example, if R. = R., (8) involves a direct calculation of

the output (current) as a weighted combination of the present

input voltage and past values delayed. The linear system

is thus being modelled as a Finite Impulse Response (FIR)

digital filter. However, if RO # Rs, the present current sample

also depends on past values of the current, and therefore the

representation is that of an Infinite Impulse Response (IIR)

filter, a situation which also obtains in (7). It maybe noted that

some important fundamental differences exist between these

two types of filter structure [2], [12].

As a simple example of the application of the CC-method,

we consider the circuit of Fig. 4(a), where the transient input

current is required in response to 1-V input pulse of 3 sec.

duration. This example was originally described in [9], where

an approach is presented based on numerical inversion of’ the

Laplace Transform. As pointed out in [9], it is extremely

difficult to obtain accurate numerical results using the DFT

in this case, due to the non-bandlimited character of the input

signal, although the exact result is, in fact, readily inferred by

inspection.

Using a scattering parameter description within the CC-

method, if the reference impedance is chosen so that R. = 2.,

the impulse response has only cme non-zero value. However

in order to indicate a slightly more general situation, Fig. 4(b)

shows the 16-point impulse response calculated with R. =

2.2., using 9 frequency-domain samples. Fig. 4(c) presents

(i) the exact result for the transient input current, (ii) the result

using the inverse Laplace Transform method of [9], and (iii)

the result using the CC approach. It is seen that the latter

provides almost perfect agreement with the exact solution,

and it should be emphasised that this agreement continues

indefinitely in time.

As a second example, we discuss the low-pass filter cir-

cuit in Fig. 5(a). For the present, all transmission lines are

assumed ideal, and Fig. 5(b) shows 64-point impulse response

representations for S1l and S21, respectively. As an indication

of the frequency-domain interpolation properties of these

samples, (i.e. between the 33 frecpency points used to generate

them), Fig. 5(c) shows the exact magnitude and phase of

S21, respectively, compared witlh the CC-interpolated curves,

and the agreement is seen to be very good. Fig. 6 presents

the transmission voltage response of this structure to a unit

voltage-step at the generator. The output voltage is calculated

from:

2N– I

J-{E

ROZ
‘U2(7JT) = ; . —

Rol “ ~=o
e((rz - k)T) . h21(kT) ~T

}
(9)

where hzl (kT) are impulse response values corresponding

to S21, with Rol and R02 being the S-parameter reference

impedances, coinciding with the impedances actually used in

the circuit. Also shown in Fig. 6 is the transient output voltage

computed using SPICE, and the agreement is observed to be

excellent.

IV. NON-PERIODIC SYSTEM FUNCTIONS

Consider now a system function which is not inherently

periodic (such as that depicted with the block symbols in

Fig. 2), and let us assume in the following that some process

is available to generate a value for the system function at any

specified frequency, Use of the causal-convolution method in

such cases requires a preliminary knowledge of the distribution

of spectral energy of the excitation signal, so that a frequency

Wm may be specified, beyond which the energy content of

the signal is relatively small, This frequency is referred to

as the boundary j%equency in the following. In essence, one

then forms the periodic extension of the system function

outside this frequency range, and the CC-technique is applied

as in the previous section. Note that it is not required that

the excitation signal be strictly band-limited, merely that the
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spectral amplitude decreases sufficiently at high frequencies.

The worst case situation in practice will arise in connection

with step functions, for which the amplitude falls off as (l/w),

but even in this case it is usually not necessary to go to very

high frequencies, in order to obtain accurate results.

T
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%
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% +++i :SPICE i
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— ~ : Convolution Analysis
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Fig. 6. Output voltage response of low-pass filter strncture to unit-step input;
SPICE and CC-method compared.

1 I i

(a)

(b)

Fig. 7. (a) RC-tme structure; (b) impulse response 1~0( t ) at 1 = 100 mm:

++ CC-method; — analytic (r = 0.25 ohm/mm; c = 0.4 pF/mm).

Nevertheless, it is necessary, at least in principle, that the

operation of periodically-extending the system function should

not:

1) introduce any discontinuities in the real or imaginary

parts in the vicinity of the boundary frequency;

2) violate the assumption of causality at all frequencies.

In practice, it is often very difficult to meet both require-

ments simultaneously, although it is possible to take measures

which greatly minimise the difficulties, without significantly

compromising accuracy, In experimenting with these issues, a

number of effective strategies have been developed, as outlined

in the following:

A. System Functions Which Become Ve~

Small at High Frequencies

As an example of this situation, we may consider the

transient response of an RC-line, as shown in Fig. 7(a). The

line is assumed to be semi-infinitely long, a delta-function

(impulse) voltage is applied at the input, and the voltage

response is sought at a specified distance from the generator.
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Fig. 8. Effect of phase-shift and periodic extension on magnitude and phase
system functions.

In this case, an analytical inversion of the Laplace Transform

becomes possible [13], and the transient response is:

7Jo(~) = ~–l{e–v’= } = g:,,
[1

rc .12
— (lo)

“exp–4. t

Because S21 quickly becomes small as the frequency is

increased, the CC method may be used directly based on

the frequency-domain representation of the RC-line, and the

above-mentioned difficulties have negligible effect. Fig. 7(b)

compares the transient response calculated in this way with the

analytical response, and the agreement is seen to be excellent.

It must be stressed that this analysis is based strictly on

frequency-domain data: there is no use of lumped approxima-

tions etc. In fact, the CC method seems to be very well suited

to the efficient transient analysis of general RC-type structures.

B. Conversion to an All-Transmission Line Network

Microwave passive circuit models often consist of a mixture

of transmission lines and lumped reactive elements, with

the latter modelling discontinuity effects, package parasitic

etc. as well as discrete passive components (e.g. bias-block

capacitors). In reality, however, a circuit element for which a

“lumped” model is adequate at say 10 GHz, is likely to show

strongly-distributed behaviour at 100 GHz. This fact can be

used to advantage to produce aperiodic system function for the

CC-method if a relatively large boundary frequency is used,

or is made necessary by the spectrum of the excitation signal.

The method, related to the standard Richard’s transformation

of network theory, involves transforming a given circuit to an

all-transmission line equivalent, with the electrical length of

each line being expressed as a multiple of 90° at the boundary

frequency. For example, a series inductor may be converted

to a series short-circuited stub, one quarter-wavelength long

at Wm; a capacitor becomes an open-circuited stub etc. The

stub impedances may be chosen to make the representations

exact at some chosen frequency within the band. The resulting

circuit will produce naturally-periodic system functions (with

ideal lines), and will only become a poor approximation to the

original circuit close to the (large) boundary frequency. But at

this frequency, the accuracy of the circuit model is probably

suspect, for the physical reasons given above, and there is, by

definition, only a small amount of excitation signal spectral

energy in any case.

1-

.5

0-

W(t)

+_

t
, I -

to tm

Fig. 9. General shape of one-sided window function applied to impulse

response waveform in range [0, tm ].

C. Conversion to Non-Minimum-Phase System Function

Probably the most effective technique for avoiding discon-

tinuities at the boundary frequency is to apply a linear phase

shift to the system function, so that the imaginary part becomes

zero at this frequency. In fact, this is a necessary requirement

for an application of the FFT algorithm to the evaluation

of the truncated version of (5). Following derivation of the

impulse-response samples, the system function to which they

interpolate is of course, no longer minimum-phase, but the

effect of the extra phase shift can easily be removed, if desired,

by a simple shift operation in the time domain. This technique

gives especially good results if there is some latitude in the

choice of a boundary frequency value, so that a value may be

chosen at which the system magnitude function passes through

a natural stationary point. The reason for this is illustrated in

Fig. 8, where it is seen that although a suitable phase shift will

produce an almostcontinuous, periodic system phase function

for an arbitrary choice of ~m, in general, the magnitude part

of the resulting function will have discontinuities in its higher-

order derivatives at this frequency. Examples of this general

process are given in the next section, but when used properly,

the effect of the shift technique on reducing discontinuity

effects can be highly beneficial.

D. Use of Time-Domain Windowing

Window functions are widely used in digital signal process-

ing, especially the symmetrical tilme-domain windows used in

FIR-filter design (Raised-Cosine, Hamming, Kaiser etc [2]).

One-sided window functions of the general shape indicated in

Fig. 9, can also be useful within the present CC technique,

especially for the suppression of residual non-causality arising

from the periodic-extension operation on general system func-

tions. Numerous suitable window functions may be envisaged,

for example, with reference to Fig. 9:

[1
t (*)

Wt<to(t)=l –;. ~

1 [1t,n–t 7
Wt>to (t) = j “ ~~ (11)

The use of window functions maybe illustrated in the context

of transient analysis of circuits incorporating lossy and/or

dispersive transmission lines, where causal-convolution should
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Fig. 10. Computed andmeasured input voltage step-responses for practical
low-pass filter stricture, with open-circuit andshort-circuit terminations.

have a strong advantage compared to conventional time-

domain transient simulation techniques. However, while ideal

transmission lines are perfectly periodic in the frequency

domain, the inclusion of conductor loss via a O depen-

dence, for example, or microstrip dispersion effects using a

Getsinger-type expression [14], will lead to problems with

non-causality when it is attempted simply to periodically-

extend a chosen low-frequency range of the system function.

In practical application of the CC-method, the non-causality

effects show up as a small but perceptible “tail” on the discrete

impulse response, which slightly degrades the interpolation

performance in the frequency domain. The degradation shows

up as a small ripple effect super-imposed on the broad trend

of the frequency domain functions. Application of a window

function is effective in suppressing this effect, and allows

the production of a smooth interpolated system function,

although the function no longer passes exactly through the

sample values chosen to create the CC impulse response.

Extensive experimentation, not reported here, has shown that

time-domain windowing appears be a useful technique where

smooth, interpolated frequency-domain behaviour is desirable,

in cases such as that just described.

V. APPLICATIONS AND VALIDATION

Several examples of applications of the CC technique have

already been given. In this section, we provide a few addi-

tional examples, emphasizing validation of the technique and

discussing its advantages and limitations.

A. Lossy, Dispersive Low Pass Filter:

Comparison with Experiment

Earlier on, we discussed the ideal transmission line structure

of Fig. 5(a), and showed in Fig. 6 that excellent agreement

could be obtained between a SPICE2 transient analysis and

a CC analysis for this structure. It is worth mentioning the

CC-technique is substantially faster in terms of computer time

in this analysis, and this advantage is particularly striking

when lines of greatly differing electrical lengths are solved,

because SPICE becomes very inefficient in such cases. A

practical version of the structure of Fig. 5(a) was realised on

conventional PCB board, a substrate deliberately used so as

to accentuate loss and other non-idealities at microwave fre-

quencies. The phase-shift technique described in the previous

+
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Fig. 11. (a) Triple asymmetric coupled microstrip line structure. Transient

output I’.“(’) reqmred for pulse voltage input. Widths and spacings (from top):

WI =16 roil; S1 = 8 roil: U’2 =8 roil; S2 =10 roil: W3 =20 mrl: Length =
800 roil, realized on 25-mrl alumina substrate. Loss and dispersion included.
(b) Impulse response of triple-coupled microstrip line structure, corresponding

to SIG (f). (c) Transient output voltage ~o (t) computed using CC-method

with various boundary frequencies: (a) 50 GHz; (b) 36 GHz; (c) 10 GHz.

section could be used to obtain 64-point impulse responses

corresponding to S1l (~) and S21(~) responses, again with

excellent interpolation properties. Fig. 10 shows the computed

and measured input voltage step-responses for the structure,

for both an open-circuit and a short-circuit termination at

the output. The measured data was obtained from a HP

54 123T high-speed oscilloscope system, and the agreement

between computed and measured results is observed to be very

good. The effects of loss and dispersion are very apparent in

comparison with the idealised result of Fig. 6, and of course

this kind of transient numerical analysis would not be possible

using SPICE2.

B. Asymmetrical Triple Coupled Line Structure

A further example is shown in Fig. 1l(a), where three

microstrip lines are coupled with unequal widths and spacings.

The frequency domain data in this case is obtained from

a commercial electromagnetic-analysis software product, and
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the SIG response, for example, may be processed to produce

the impulse response shown in Fig. 1l(b), based on 257

frequency domain points up to about 50 GHz. Assuming now

a trapezoidal-type pulse input of 1.1 nS duration with equal

rise and fall times of 50 pS, Causal-Convolution analysis

produces time-domain voltage responses at Port (6) as shown

in Fig. 10(c). In the latter diagram, the waveforms displayed

as (a) and (b), respectively, show the effect of a move of

the boundary frequency from its original value down to, say,

36 GHz. Because there is in fact relatively little pulse spectral

energy above 36 GHz, the effect on the time-domain response

is virtually imperceptible. However, if the boundary frequency

is reduced to only 10 GHz, waveform (c) indicates that some

changes are becoming apparent in the response, and this choice

of frequency is evidently too low. Experience to date suggests

that if the boundary frequency is at least of the order of

the reciprocal of the shortest rise-time of the excitation (20

GHz in the case just considered), application of the CC-

technique will produce very acceptable results in any transient

analysis.

VI. CONCLUSION

A new method has been presented for the transient analysis

of causal linear systems described in the frequency domain.

The central novelty lies in the method of determining the

impulse response, which is interpreted as a truly discrete func-

tion corresponding to a periodically-extended system function.

The impulse response may be computed with high numerical

efficiency, while retaining excellent interpolation properties

with respect to the original system function. Convolution

operations are also intrinsically in the form of a sum-of-

products calculation. The technique is capable of handling

arbitrary excitation signals, unlike DFT-based analysis, for

example, which requires bandlimited excitations. This causal-

convolution technique produces highly accurate results pro-

vided the boundaty frequency beyond which the original

system function becomes periodically-extended, is such as to

contain most of the spectral energy in the excitation signal.

The operation of periodic-extension on a given causal

complex-valued system function, must be performed with

some care. However, provided some simple guidelines are

followed as indicated in this paper, very successful results

may be obtained in quite general cases. Indeed, we have used

the technique successfully on frequency-domain data from

electromagnetic simulators, network analyser measurement

data etc. We have had no experience to date of any difficulty

from numerical overflow or instability, and accurate transient

analysis is invariably possible with great efficiency.

While the CC-technique has been shown to be of consider-

able value in linear-circuit transient analysis, its real power

is apparent in nonlinear applications, where it provides an

extremely simple interface between nonlinear and linear parts
of a system, with the non-linear parts analysed in the time-

domain, and the linear parts in the frequency domain. We have

successfully demonstrated this extension, and intend to report

on this work in the near future.
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