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Causal-Convolution—A New Method
for the Transient Analysis of Linear
Systems at Microwave Frequencies

Thomas J. Brazil, Member, IEEE

Abstract—A new convolution-type method is presented for the
transient analysis of causal linear systems described in the
frequency-domain. The central novelty lies in the proposed
method of determining impulse responses in the time-domain,
which are interpreted as truly discrete functions corresponding
to periodically-extended system functions in the frequency-
domain. Such impulse responses may be computed with high
numerical efficiency, while having excellent interpolation
properties with respect to the original system function. The
convolution operations which result are also naturally in the
form of a sum-of-products calculation. The method is capable
of handling arbitrary excitation signals, and may in principle
be readily extended to more general nonlinear analysis. Several
examples of the technique are given, including comparisons and
validation both using existing methods, analytical results and
experimental measurements.

I. INTRODUCTION

FFICIENT and flexible large-signal analysis capability

is a critical requirement for many types of microwave
CAD. Because of the complexity of the circuit and device
models involved in such simulations, considerable challenges
arise in finding a suitable general-purpose method of numerical
solution. This contribution describes a new approach to the
characterisation of causal linear systems which provides a
very attractive basis for analysing the more general nonlinear
problem. However, in order properly to describe the basis and
range of applicability of the proposed approach, we restrict our
attention in the present paper solely to the transient analysis of
linear, time-invariant electrical systems, subject to essentially-
arbitrary excitation signals. The method has already been
described in brief outline in [1]: in the following, a more
extensive discussion of the mathematical basis is provided, and
important issues affecting accuracy and areas of applicability
are addressed.

The literature on the transient numerical solution of linear
systems is, of course, very extensive, and in this introduction
we consider only briefly those methods more commonly
encountered by microwave engineers, to whom two basic
situations usually present themselves. In the first case, the
composition of the linear system is known, and a time-domain
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description is possible in terms of a finite system of ordinary
differential equations (ODE’s), such as in the familiar case
of lumped circuit elements. Numerical solution of the ODE’s
involves their transformation to difference equations, and it
is possible within this context to extend the analysis to
include distributed circuits consisting of ideal transmission
lines. The SPICE program is probably the most well-known
electrical analysis tool for this kind of problem, but many
others exist. A reasonably wide range of common excitation
signals are accommodated within SPICE, and transient anal-
ysis proceeds by standard step-by-step, time-domain solution
techniques.

A second, not necessarily separate, situation arises when
the terminal behaviour of the linear network is specified in
terms of a complex-valued system function in the frequency-
domain. This may be achieved either by direct calculation for
a known network structure, by measurement, or through some
other process. A very common numerical analysis approach
in such cases involves sampling the excitation signal in the
time-domain, followed by application of the Discrete Fourier
Transform (DFT) to produce a representation in the frequency-
domain—an operation which may benefit greatly from the
computational efficiency of the Fast Fourier Transform (FFT)
algorithm [2]. The solution is then carried out in terms of
frequency-domain samples, and an inverse DFT is carried
out to recover the time-domain solution [3]. Indeed, this
procedure is theoretically exact, at least for the steady-state
response, provided the excitation signal is band-limited and
sampled at least at the Nyquist rate. If these conditions are
not satisfied, however, aliasing errors occur which are difficult
to estimate and/or may require large transform sizes for their
minimisation. It may be noted that the extension of this latter
technique to mixed linear/non-linear system solution leads to
the well known Harmonic-Balance method in its various forms
(41, [5].

The method proposed in this work is based on a convolution
technique, with the main novelty residing in the method of ob-
taining and using the impulse response samples. Convolution-
oriented techniques have been proposed by a number of
authors (e.g. [6]-{8]), but they either continue to rely on direct
application of the DFT to interconnect time- and frequency-
domains, or are restricted in the class of linear problem which
may be addressed (e.g. nearly-matched transmission lines). Of
course, in mathematical terms, the transient response is also

0018-9480/95$04.00 © 1995 IEEE



316 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 43, NO. 2, FEBRUARY 1995
TIME-DOMAIN FREQUENGY-DOMAIN
| s | I I
DISCRETE CONTINUOUS I DISCRETE CONTINUOUS
NON  pemjoDIC NON | rerioic NON  pepjopic NON
PERIODIC PERIODIC PERIODIC | PERIODIC PERIODIC
bt My O ‘J‘T W JATAN AL
t 7t V'L t | f f f f
® ® ® { ® [ ]
FOURIER
SHERIES
"REVERSE"
FOURIER
SERIES
DISCRETE
FOURISR —
‘TRANSFORM
L FOURIER
TRANSFORM
Fig. 1. Classification of time-domain and frequency-domain relationships.

obtainable from the inverse Laplace Transform, and, while
numerical implementation of this approach is possible [9],
considerable care is needed in practice to produce reliable
results. A range of other approaches to transient analysis
have been proposed, including different methods based, for
example. on “waveform relaxation” or “asymptotic waveform
expansion (AWE),” which are applicable to lossy transmission
line problems {10], [11].

In Section II we present the linear-system and signal-
processing background to the method proposed here, described
as the Causal-Convolution method. This is followed in Sec-
tions III and IV by an account of the practical implementation
issues that must be considered for applying this method.
A selection of representative results is contained in Sec-
tion V, aimed at assessing and validating the technique in
comparison both with other methods, and with experimental
measurements. A discussion and conclusions are contained in
Section VI

II. LINEAR-SYSTEM AND SIGNAL-PROCESSING
BASIS OF THE CAUSAL-CONVOLUTION METHOD

The essential framework for the method described here may
be introduced with reference to Fig. 1. This diagram classi-
fies functions which are described equivalently in the time-
domain and (real) frequency-domain, into the sub-categories
of discrete and continuous, in the sense of the range of the
independent variable. These are further divided within each
class as either periodic or non-periodic. For present purposes,
all frequency-domain representations are assumed to exhibit
Hermitean symmetry, i.e.:

X(f)=X"(=1) ¢y

where “*” denotes complex conjugate, and the time-domain
functions are accordingly real-valued. It is assumed further that
all time functions have finite average power, whether averaged
over one period (in the periodic case) or over all time. Note
that the representations of Fig. 1 may be taken to apply either
to signals or systems. For example, in the case of signals, the
frequency-domain representation would be interpreted as the
spectrum of the signal, whereas for systems, the time-domain
function constitutes the impulse response of the system, and
SO on.

The Fourier Transform (FT) provides a general relationship
between the two domains, and in fact, using the mathematical
theory of distributions, all four transform-pair relationships
indicated in Fig. 1| may be viewed as particular cases of
the FT. However, it is considered clearer in the present
context to reserve use of the FT for continuous, non-periodic
functions in time and frequency. Of the remaining three
cases, the DFT is observed to be appropriate to functions
which are inherently periodic in both domains—this gives rise
to the aliasing problems mentioned earlier when it is used
with non-band-limited signals. Moreover, the DFT is strictly
defined for discrere functions only—extrapolation to contin-
uous behaviour requires great care. In the design of Finite
Impulse Response (FIR) digital filters, for example, it is well
known that direct use of the DFT produces poor interpolation
behaviour between sample points in the continuous frequency
domain [12].

A further transform pair in Fig. | is the familiar form
of the Fourier Series, while the fourth situation is of most
direct interest in what follows. This transform relates con-
tinuous, periodic, complex-valued functions in the frequency-
domain, to discrete, real-valued functions in the time-domain.
A straightforward approach to such cases would be to use a
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reverse form of Fourier Series, as follows, where 2.w,, is taken
as the period of the frequency-domain function:

FWm
z(nT) = L / X(w) - exp[+jnwT] - dw

2r J_ ..
+oo
X(w) = Z z(nT) - exp[—jnwT]

+oo
z(0) + Z[x(kT) + z(—kT)] - cos(kwT)
k=1
+oo
— ) _[w(kT) - z(—kt)] - sin(kwT) 2)

k=1

where T' = (7 /wm).

Notice the exponent sign-change compared to the usual
complex form of the Fourier Series, the reason for which is
explained in due course. Using (1) it is easy to confirm that
the above integral for the time-domain samples gives a purely
real-valued result, which, with X (w) = R(w) + j - I(w), may
be evaluated as:

z(nT)
— wi ) / " [R(w) - cos(nnT) — I(w) - sin(naT)] - dw
™m 0
3

Assuming the periodic frequency-domain function in question
to be a system function, then (2) shows that the associated time
function, which is a form of impulse response, is a discrete,
real-valued function extending over positive and negative
time. The approach just described is quite general, in that
the real and imaginary parts of the system function may be
defined independently, provided (1) is satisfied. However, all
physically-realisable passive systems must exhibit the property
of causality, meaning simply that if the input is zero for
time { < tp, the output is also zero for ¢ < %g. Hence,
the impulse response must also be zero for negative time.
In terms of the associated system function, this places quite
severe additional constraints on the frequency-dependence
of the real and imaginary parts (or amplitude and phase
functions), besides the condition of (1), which merely ensures
that the impulse response is real. For periodic functions,
these conditions may be expressed as the following Hilbert
Transform pair [2]:

1 7

R()) - cot (“’;A) -d\

+r

-7

R(w) = z(0) + %/

—7

I(\) - cot (“’T_)‘) A (@

1t may be noted further that if the system function is minimum
phase (i.e. has no zeroes in the open right-hand s-plane), the
real-part function is uniquely determined by the imaginary-
part function, and vice versa. Using (4) in (3), we find that
z(nT') becomes identically zero for negative values of “n,”
as would be expected for a causal time-domain representation.
(This would not be the case if the opposite sign had been used

in the exponents of (2), since the time-domain samples would
then become anti-causal, i.e. zero-valued for positive time).

Assuming a causal system function in the following dis-
cussion, then a substantial improvement becomes possible
with regard to the numerical calculation of impulse response
samples, if the causal condition is in effect forced by the
transform relationships. Hence, the following transform pair
is proposed here for such cases, as a replacement for (2):

z(nT) = L /+wm X(w) - exp [+jnwT] - dw

o —wm
+o0
X(w)=T-Y_ z(nT) - exp [—jnwT]

n=0

+oo
=T -2(0)+T- }: z(kT) - [cos(kwT)
k=1
~j - sin(kwT)] 5

The change in scaling factors has been introduced to allow
the z(nT") to limit to the conventional {continuous) impulse
response as w,, tends to infinity. For numerical evaluation of
(5), the infinite summations shown must be truncated. If a
finite number of terms are sufficient in the summation, then
it is easy to show that the integral evaluation in (5) reduces
exactly to a trapezoidal-rule type of summation. In particular,
if (N + 1) equally-spaced samples of the system function
in the frequency range [0,w,,] are used in (5), the impulse
response produced is of length (2.N) in positive time. Then
it is possible to take full advantage of the FFT algorithm,
and obtain results with excellent accuracy, provided sufficient
samples are taken of the frequency domain function so that
the discrete impulse response tends to reasonably small values
when computed at the largest time points. As demonstrated in
the examples to follow, the impulse response calculated in this
way is found to have excellent interpolation properties in the
frequency domain, in the sense of fitting the original system
function well between the (N 4 1) frequency sample points
used for its derivation.

With the system function represented by a finite impulse
response, the computation of the transient response in effect
reduces to a discrete convolution operation at each time step.
However, the precise nature of this operation depends on the
formulation of the system function, as discussed in more detail
in the next section.

The essence of the technique presented here is to define
a methodology whereby all causal linear system functions
may be represented approximately by a finite impulse re-
sponse, up to some specified boundary frequency. Beyond
this frequency, the (periodic) function to which the impulse
response interpolates and the original system function, may
deviate quite considerably. Therefore the main etror in per-
forming transient analysis using the discrete impulse response
description, resides in the degree to which the spectral energy
in the excitation signal becomes relatively small beyond the
boundary frequency. The situation is depicted schematically
in Fig. 2, where an amplitude response is shown together with
both its periodic extension and an assumed spectral distribution
for the excitation signal. Errors arise in transient analysis
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Fig. 2. Example of system amplitude function (@) and periodic extension,
with spectral distribution of excitation signal (f = 20Gh=).

from that portion of the signal spectrum beyond f,, which
interacts with the periodic extension of the system function,
rather than with the original system function. In practice, and
as demonstrated in Section V, the technique is found to be
rather tolerant of “leakage” of excitation signal spectral energy
beyond the boundary frequency.

The overall process described above for computing the
impulse response samples, combined with carrying out the
appropriate convolution operations, will be described in the
following as the Causal-Convolution (CC) technique for the
transient analysis of linear systems.

III. NATURALLY-PERIODIC SYSTEM FUNCTIONS

It is clear from the previous section that the CC-method
is based fundamentally on the concept of a periodic system
response. Of course, the majority of system functions encoun-
tered in practice do not directly satisfy this requirement, but as
will be shown in due course, the CC-approach can still give
excellent results in such cases provided certain preparatory
steps are taken. For the present, many essential features of the
technique may be illuminated by assuming that the system
function is indeed periodic. A number of circuits familiar
to microwave engineers perfectly fulfil this condition-indeed,
any network composed of an arbitrary connection of ideal,
commensurate transmission lines will suffice.

In order to focus the discussion, we consider the one-port
network in Fig. 3. Let us suppose that the transient input
current is required in response to a specified excitation voltage
beginning at ¢ = . A simple choice for the system function
would be the input impedance Z(w) which is assumed to be
periodic in frequency over [—wy, , wy,]. If (N + 1) samples are

Rs i)
AAY
e(t)T N Linear 1-Port
S11(f) [Ref. Ro)

Fig. 3. Simple 1-Port network to demonstrate transient analysis technique.

taken in the positive frequency range, then impulse response
samples z(k7") may be computed as described in the previous
section, with ‘5’ in the range {0,(2N — 1)}. Now in the
frequency-domain we write:

E(w)=[Rs + Z(w)] - I(w)

Using the CC-approach and transforming to the time-domain:

2N—-1
e(nT) =Ry -i(nT)+T- > i((n—k)T)-2(kT) (6)
k=0

Notice that instead of a convolution integral being required in
the time domain, as would normally be the case, the discrete
nature of z(kT') means that the simple summation shown in
(6) is exactly correct. The algorithm for computing the ¢(nT’)
is therefore:

e(nT) =T - S8 i((n = k)T) - 2(kT)]

However, this approach may not be optimum, since the
impedance magnitude can range widely, and could indeed
range from minus- to plus-infinity in particular cases. An
unattractively-large number of frequency samples would
therefore be required to achieve accurate results throughout
the frequency band.

We have found that, in general, system function formu-
lations based on the scattering matrix are usually much
preferable, since the parameters remain bounded in spite of
impedance singularities. For example, let Si;(w) denote the
input voltage reflection coefficient (referred to Rg) in Fig. 3,
and hy1(kT) represent the corresponding impulse response
samples. Using a similar approach to that given above, it is
straightforward to show that the current may now be calculated
from (8), shown at the bottom of the page.

Although these equations may suggest that the time spacing
of the output samples must coincide with the impulse response
spacing, in fact this is not so: a simple modification to the
convolution expression allows any time step to be used which

i(nT) = )

i(nT) =

{1 — h11(0) T} . e(nT) —

T -3 Cl(n— K)T) - hay (KT)

where:

RO . {1+h11(0) T}‘f‘Rs . {1 — hll(O) T}

C(mT) = [e(mT) + {Roy — Ry} - «(mT)] ®)
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Fig. 4. (a) Transient response of short-circuited transmission line; (b) im-
pulse response computed from S11(f) [Ro = 2.Zo}; (c) pulse response of
input current 2(t).

is an integer times smaller than this spacing. Varying time-
steps may be accommodated by using a suitable interpolation
technique. Hence, essentially-arbitrary resolution is possible
in the time-domain solution.

There is an interesting alternative view of the above for-
mulations, from the point of view of digital filter concepts.
For example, if Ry = R, (8) involves a direct calculation of
the output (current) as a weighted combination of the present
input voltage and past values delayed. The linear system
is thus being modelled as a Finite Impulse Response (FIR)
digital filter. However, if Rg # R, the present current sample
also depends on past values of the current, and therefore the
representation is that of an Infinite Impulse Response (IIR)
filter, a situation which also obtains in (7). It may be noted that
some important fundamental differences exist between these
two types of filter structure [2], [12].

As a simple example of the application of the CC-method,
we consider the circuit of Fig. 4(a), where the transient input
current is required in response to 1-V input pulse of 3 sec.

duration. This example was originally described in [9], where
an approach is presented based on numerical inversion of the
Laplace Transform. As pointed out in [9], it is extremely
difficult to obtain accurate numerical results using the DFT
in this case, due to the non-bandlimited character of the input
signal, although the exact result is, in fact, readily inferred by
inspection.

Using a scattering parameter description within the CC-
method, if the reference impedance is chosen so that By = Z,
the impulse response has only one non-zero value. However
in order to indicate a slightly more general situation, Fig. 4(b)
shows the 16-point impulse response calculated with Ry =
2.7y, using 9 frequency-domain samples. Fig. 4(c) presents
(i) the exact result for the transient input current, (ii) the result
using the inverse Laplace Transform method of [9], and (iii)
the result using the CC approach. It is seen that the latter
provides almost perfect agreement with the exact solution,
and it should be emphasised that this agreement continues
indefinitely in time.

As a second example, we discuss the low-pass filter cir-
cuit in Fig. 5(a). For the present, all transmission lines are
assumed ideal, and Fig. 5(b) shows 64-point impulse response
representations for Sy; and So;, respectively. As an indication
of the frequency-domain interpolation properties of these
samples, (i.e. between the 33 frequency points used to generate
them), Fig. 5(c) shows the exact magnitude and phase of
Ss1, respectively, compared with the CC-interpolated curves,
and the agreement is seen to be very good. Fig. 6 presents
the transmission voltage response of this structure to a unit
voltage-step at the generator. The output voltage is calculated
from:

va(nT) = 1, [Bo

2N -1
2 V Roy { > elln- k)T)'hzl(kT)-T}

k=0
)]

where hg(kT) are impulse response values corresponding
to Sg1, with Rg; and Rye being the S-parameter reference
impedances, coinciding with the impedances actually used in
the circuit. Also shown in Fig. 6 is the transient output voltage
computed using SPICE, and the agreement is observed to be
excellent.

IV. NON-PERIODIC SYSTEM FUNCTIONS

Consider now a system function which is not inherently
periodic (such as that depicted with the block symbols in
Fig. 2), and let us assume in the following that some process
is available to generate a value for the system function at any
specified frequency. Use of the causal-convolution method in
such cases requires a preliminary knowledge of the distribution
of spectral energy of the excitation signal, so that a frequency
wy, may be specified, beyond which the energy content of
the signal is relatively small, This frequency is referred to
as the boundary frequency in the following. In essence, one
then forms the periodic extension of the system function
outside this frequency range, and the CC-technique is applied
as in the previous section. Nofe that it is not required that
the excitation signal be strictly band-limited, merely that the
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spectral amplitude decreases sufficiently at high frequencies.
The worst case situation in practice will arise in connection
with step functions, for which the amplitude falls off as (1/w),
but even in this case it is usually not necessary to go to very
high frequencies, in order to obtain accurate results.
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Fig. 6. Output voltage response of low-pass filter structure to unit-step input;
SPICE and CC-method compared.
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Fig. 7. () RC-lme structure; (b) impulse response ¥0(¢) at 1 = 100 mm:
++ CC-method, analytic (r = 0.25 ohm/mm; ¢ = 0.4 pF/mm).

Nevertheless, it is necessary, at least in principle, that the
operation of periodically-extending the system function should
not:

1) introduce any discontinuities in the real or imaginary

parts in the vicinity of the boundary frequency;

2) violate the assumption of causality at all frequencies.

In practice, it is often very difficult to meet both require-
ments simultaneously, although it is possible to take measures
which greatly minimise the difficulties, without significantly
compromising accuracy. In experimenting with these issues, a
number of effective strategies have been developed, as outlined
in the following:

A. System Functions Which Become Very
Small at High Frequencies

As an example of this situation, we may consider the
transient response of an RC-line, as shown in Fig. 7(a). The
line is assumed to be semi-infinitely long, a delta-function
(impulse) voltage is applied at the input, and the voltage
response is sought at a specified distance from the generator.
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In this case, an analytical inversion of the Laplace Transform
becomes possible [13], and the transient response is:

Vre-l
2/m - t3/2

Because Ss3; quickly becomes small as the frequency is
increased, the CC method may be used directly based on
the frequency-domain representation of the RC-line, and the
above-mentioned difficulties have negligible effect. Fig. 7(b)
compares the transient response calculated in this way with the
analytical response, and the agreement is seen to be excellent.
It must be stressed that this analysis is based strictly on
frequency-domain data: there is no use of lumped approxima-
tions etc. In fact, the CC method seems to be very well suited
to the efficient transient analysis of general RC-type structures.

re- 12
4-t

vo(t) = L7He V) = ~exp[— ] (10)

B. Conversion to an All-Transmission Line Network

Microwave passive circuit models often consist of a mixture
of transmission lines and lumped reactive elements, with
the latter modelling discontinuity effects, package parasitics
etc. as well as discrete passive components (e.g. bias-block
capacitors). In reality, however, a circuit element for which a
“lumped” model is adequate at say 10 GHz, is likely to show
strongly-distributed behaviour at 100 GHz. This fact can be
used to advantage to produce a periodic system function for the
CC-method if a relatively large boundary frequency is used,
or is made necessary by the spectrum of the excitation signal.
The method, related to the standard Richard’s transformation
of network theory, involves transforming a given circuit to an
all-transmission line equivalent, with the electrical length of
each line being expressed as a multiple of 90° at the boundary
frequency. For example, a series inductor may be converted
to a series short-circuited stub, one quarter-wavelength long
at w,,; a capacitor becomes an open-circuited stub etc. The
stub impedances may be chosen to make the representations
exact at some chosen frequency within the band. The resulting
circuit will produce naturally-periodic system functions (with
ideal lines), and will only become a poor approximation to the
original circuit close to the (large) boundary frequency. But at
this frequency, the accuracy of the circuit model is probably
suspect, for the physical reasons given above, and there is, by
definition, only a small amount of excitation signal spectral
energy in any case.

b w(t)

0 to tm

Fig. 9. General shape of one-sided window function applied to impulse
response waveform in range [0, ¢, ].

C. Conversion to Non-Minimum-Phase System Function

Probably the most effective technique for avoiding discon-
tinuities at the boundary frequency is to apply a linear phase
shift to the system function, so that the imaginary part becomes
zero at this frequency. In fact, this is a necessary requirement
for an application of the FFT algorithm to the evaluation
of the truncated version of (5). Following derivation of the
impulse-response samples, the system function to which they
interpolate is of course, no longer minimum-phase, but the
effect of the extra phase shift can easily be removed, if desired,
by a simple shift operation in the time domain. This technique
gives especially good results if there is some latitude in the
choice of a boundary frequency value, so that a value may be
chosen at which the system magnitude function passes through
a natural stationary point. The reason for this is illustrated in
Fig. 8, where it is seen that although a suitable phase shift will
produce an almostcontinuous, periodic system phase function
for an arbitrary choice of f,,, in general, the magnitude part
of the resulting function will have discontinuities in its higher-
order derivatives at this frequency. Examples of this general
process are given in the next section, but when used properly,
the effect of the shift technique on reducing discontinuity
effects can be highly beneficial.

D. Use of Time-Domain Windowing

Window functions are widely used in digital signal process-
ing, especially the symmetrical time-domain windows used in
FIR-filter design (Raised-Cosine, Hamming, Kaiser etc [2]).
One-sided window functions of the general shape indicated in
Fig. 9, can also be useful within the present CC technique,
especially for the suppression of residual non-causality arising
from the periodic-extension operation on general system func-
tions. Numerous suitable window functions may be envisaged,
for example, with reference to Fig. 9:

_to v
1 t (*m—to)
wgdﬂ=1—§'%

1 [tn—t]"
2 tm — tO
The use of window functions may be illustrated in the context

of transient analysis of circuits incorporating lossy and/or
dispersive transmission lines, where causal-convolution should

an

Wt>tg (t) =
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Fig. 10. Computed and measured input voltage step-responses for practical
low-pass filter structure, with open-circuit and short-circuit terminations.

have a strong advantage compared to conventional time-
domain transient simulation techniques. However, while ideal
transmission lines are perfectly periodic in the frequency
domain, the inclusion of conductor loss via a \/f depen-
dence, for example, or microstrip dispersion effects using a
Getsinger-type expression [14], will lead to problems with
non-causality when it is attempted simply to periodically-
extend a chosen low-frequency range of the system function.
In practical application of the CC-method, the non-causality
effects show up as a small but perceptible “tail” on the discrete
impulse response, which slightly degrades the interpolation
performance in the frequency domain. The degradation shows
up as a small ripple effect super-imposed on the broad trend
of the frequency domain functions. Application of a window
function is effective in suppressing this effect, and allows
the production of a smooth interpolated system function,
although the function no longer passes exactly through the
sample values chosen to create the CC impulse response.
Extensive experimentation, not reported here, has shown that
time-domain windowing appears be a useful technique where
smooth, interpolated frequency-domain behaviour is desirable,
in cases such as that just described.

V. APPLICATIONS AND VALIDATION

Several examples of applications of the CC technique have
already been given. In this section, we provide a few addi-
tional examples, emphasising validation of the technique and
discussing its advantages and limitations.

A. Lossy, Dispersive Low Pass Filter:
Comparison with Experiment

Earlier on, we discussed the ideal transmission line stracture
of Fig. 5(a), and showed in Fig. 6 that excellent agreement
could be obtained between a SPICE2 transient analysis and
a CC analysis for this structure. It is worth mentioning the
CC-technique is substantially faster in terms of computer time
in this analysis, and this advantage is particularly striking
when lines of greatly differing electrical lengths are solved,
because SPICE becomes very inefficient in such cases. A
practical version of the structure of Fig. 5(a) was realised on
conventional PCB board, a substrate deliberately used so as
to accentuate loss and other non-idealities at microwave fre-
quencies. The phase-shift technique described in the previous
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Fig. 11. (a) Triple asymmetric coupled microstrip line structure. Transient
output Vo(t) required for pulse voltage input. Widths and spacings (from top):
W1 =16 mil; S1 =8 mil; W2 =8 mil; S2 =10 mil: W3 = 20 mul: Length =
800 mil, realized on 25-mul alumina substrate. Loss and dispersion included.
(b) Impulse response of triple-coupled microstrip line structure, corresponding
to S16(f). (¢) Transient output voltage Vj(¢) computed using CC-method
with various boundary frequencies: (a) 50 GHz; (b) 36 GHz; (¢) 10 GHz.

section could be used to obtain 64-point impulse responses
corresponding to Sy;(f) and S21(f) responses, again with
excellent interpolation properties. Fig. 10 shows the computed
and measured input voltage step-responses for the structure,
for both an open-circuit and a short-circuit termination at
the output. The measured data was obtained from a HP
54123T high-speed oscilloscope system, and the agreement
between computed and measured results is observed to be very
good. The effects of loss and dispersion are very apparent in
comparison with the idealised result of Fig. 6, and of course
this kind of transient numerical analysis would not be possible
using SPICE2.

B. Asymumetrical Triple Coupled Line Structure

A further example is shown in Fig. 11(a), where three
microstrip lines are coupled with unequal widths and spacings.
The frequency domain data in this case is obtained from
a commercial electromagnetic-analysis software product, and
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the Sy response, for example, may be processed to produce
the impulse response shown in Fig. 11(b), based on 257
frequency domain points up to about 50 GHz. Assuming now
a trapezoidal-type pulse input of 1.1 nS duration with equal
rise and fall times of 50 pS, Causal-Convolution analysis
produces time-domain voltage responses at Port (6) as shown
in Fig. 10(c). In the latter diagram, the waveforms displayed
as (a) and (b), respectively, show the effect of a move of
the boundary frequency from its original value down to, say,
36 GHz. Because there is in fact relatively little pulse spectral
energy above 36 GHz, the effect on the time-domain response
is virtually imperceptible. However, if the boundary frequency
is reduced to only 10 GHz, waveform (c) indicates that some
changes are becoming apparent in the response, and this choice
of frequency is evidently too low. Experience to date suggests
that if the boundary frequency is at least of the order of
the reciprocal of the shortest rise-time of the excitation (20
GHz in the case just considered), application of the CC-
technique will produce very acceptable results in any transient
analysis.

VI. CONCLUSION

A new method has been presented for the transient analysis
of causal linear systems described in the frequency domain.
The central novelty lies in the method of determining the
impulse response, which is interpreted as a truly discrete func-
tion corresponding to a periodically-extended system function.
The impulse response may be computed with high numerical
efficiency, while retaining excellent interpolation properties
with respect to the original system function. Convolution
operations are also intrinsically in the form of a sum-of-
products calculation. The technique is capable of handling
arbitrary excitation signals, unlike DFT-based analysis, for
example, which requires bandlimited excitations. This causal-
convolution technique produces highly accurate results pro-
vided the boundary frequency beyond which the original

system function becomes periodically-extended, is such as to

contain most of the spectral energy in the excitation signal.

The operation of periodic-extension on a given causal
complex-valued system function, must be performed with
some care. However, provided some simple guidelines are
followed as indicated in this paper, very successful results
may be obtained in quite general cases. Indeed, we have used
the technique successfully on frequency-domain data from
electromagnetic simulators, network analyser measurement
data etc. We have had no experience to date of any difficulty
from numerical overflow or instability, and accurate transient
analysis is invariably possible with great efficiency.

While the CC-technique has been shown to be of consider-
able value in linear-circuit transient analysis, its real power
is apparent in nonlinear - applications, where it provides an
extremely simple interface between nonlinear and linear parts
of a system, with the non-linear parts analysed in the time-

domain, and the linear parts in the frequency domain. We have
successfully demonstrated this extension, and intend to report
on this work in the near future.
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